CSIC Cambridge Centre for Smart Infrastructure & Construction

Distributed Fibre Optic Strain Sensing for Monitoring Civil Infrastructure

A practical guide

Cedric Kechavarzi, Kenichi Soga, Nicholas de Battista, Loizos Pelecanos, Mohammed Elshafie and Robert Mair

Contents	Acknowledgements About the authors Notation	ix xi xv
	Introduction References	1 6
	Part A. General concepts	9
01	 Physical principles of fibre optic strain sensing 1.1. Basics of light propagation in optical fibres 1.2. Distributed Brillouin sensing principles References 	11 11 22 29
02	 Fibre optic strain analysers and specifications 2.1. System specifications 2.2 Commercial Brillouin analysers 2.3. Basic Brillouin spectrum analysers operation References 	31 38 47 52
	Part B. Practical considerations	53
03	 DFOS hardware and testing equipment 3.1. Strain and temperature compensation cable characteristics 3.2. Splices 3.3 Connectors 3.4. Testing and integrity checking equipment References 	55 63 69 71 82
04	 Installation and operation of DFOS systems 4.1. Preparation of fibre optic cables for a DFOS system 4.2. Installation of a DFOS system 4.3. Taking measurements from a DFOS system 4.4. Health and safety considerations Reference 	83 90 99 101 104
	Part C. Data processing, analysis and interpretation	105
05	 Calculating strain from Brillouin frequency data 5.1. Influence of strain and temperature on Brillouin frequency shift 5.2. Thermal expansion of structure 	107 107 108
	5.3. Temperature compensated strain5.4 Associated data processing routines and implementation into coffuse	109
	References	114

06	Engineering interpretation	115
	6.1. Axially loaded piles	115
	6.2. Retaining walls	118
	6.3. Tunnels	120
	6.4 Slopes	123
	6.5 Example of data interpretation: axially loaded	
	nile	125
	Peferences	129
	References	125
	Part D. Case studies in geotechnical	
	applications	131
		400
	Tunnel monitoring	133
	7.1. Thameslink tunnel at King's Cross: Deformation monitoring during proximity	
	tunnelling	133
	7.2 Royal Mail tunnel at Liverpool Street:	
	Monitoring of a cast iron tunnel during	
	provimity tunnelling	141
	7.2 Singapore Circle Line 3: Monitoring twin	141
	tuppel interaction	146
	7.4 National Grid tunnal: Segment lining	140
	7.4. National Grid turner. Segment ining	150
	Instrumentation	155
	7.5. Crossrail Liverpool Street Station: Sprayed	
	concrete tunnel lining monitoring during	
	cross-passages excavation	159
	7.6. CERN TT10 tunnel section: Long-term	
	structural health monitoring	163
	References	168
08	Pile monitoring	169
	8.1. 259 City Road: Preliminary load test	169
	8.2. Francis Crick Institute: Osterberg cell pile test	178
	8.3. Isle of Dogs: Osterberg cell pile test	186
	8.4. Continuous flight auger (CFA) pile: Preliminary	
	pile testing	191
	8.5. Lambeth College: Pile loading and thermal	
	response test	197
	8.6. 6 Bevis Marks: Monitoring and re-use of piles	203
	References	207
09	Diaphragm walls	209
	9.1. Abbey Mills pumping station: Shaft	
	monitoring during excavation	209
	9.2 Paddington Station: Diaphragm wall	
	deformation monitoring during deep	
	excavation	216
	CACAVATION	210

vi

	9.3. Stepney Green Plate Junction: Shaft monitoring during excavation Reference	221 227
10	Slopes and embankments 10.1. A2/A282 Widening project: Steep highway	229
	cut slope stabilised with soil nails	229
	10.2. Slope monitoring	235
	Reference	240
	Index	241

vii